首页 >> 最新文章

直流和脉冲电镀Cu互连线的性能比较罗定

光辉机械网 2022-07-14 18:12:19

直流和脉冲电镀Cu互连线的性能比较

随着芯片集成度的不断提高,Cu已经取代Al成为超大规模集成电路互连中的主流互连材料。在目前的芯片制造中,芯片的布线和互连几乎全部是采用直流电镀的方法获得Cu镀层。在直流电镀中,由于金属离子趋近阴极不断被沉积,因而不可避免地造成浓差极化。而脉冲电镀在电流导通时,接近阴极的金属离子被充分地沉积;当电流关断时,阴极周围的放电离子又重新恢复到初始浓度。脉冲电镀的主要优点有:降低浓差极化,提高了阴极电流密度和电镀效率;改善镀层物理性能;所得镀层具有较好的防护性;能获得致密的低电阻率金属沉积层。

脉冲电镀理论20世纪初就已被提出。近几年来,国外陆续发表了一些关于脉冲电镀在集成电路Cu互连应用中的研究[]。目前国内,针对脉冲电镀Cu的研究主要集中在冶金级电镀和印刷电路板(PCB)布线方面,几乎没有关于脉冲电镀应用于集成电路Cu互连的文献报道[]。而在集成电路(IC)制造采用的是成熟的直流电镀工艺。PCB中线路的特征尺寸约为几十微米,而芯片中Cu互连的特征尺寸是1 m,因此对亚微米级厚度Cu镀层的性能研究显得尤为必要。本文将针对集成电路芯片Cu互连技术,研究分别用脉冲电镀和直流电镀沉积得到的Cu镀层性能。

1 实验采用

200mmp型(100)Si片,首先在Si片上PECVD(conceptone200mmdielectricsystem,Novellus)淀积800nmSiO2介质层。接着用PVD(Invoa200,Novellus)溅射25nm的TaN/Ta扩散阻挡层,然后用PVD溅射50nm的Cu籽晶层。在电解槽中,阳极为高纯度的Cu棒,外面包裹一层过滤膜,其作用是电镀时阻止固态不溶性杂质颗粒进入Cu镀层,影响镀层性能。将经PVD溅射好Cu籽晶层的200mmSi片切片后的小矩形片作为阴极(5cm 2cm)。电解槽底部靠近阴极处有一个磁力搅拌子,电镀时置于电解槽下面的磁力搅拌仪产生磁场,驱动搅拌子匀速转动,转速设定为400r/min,这可以使电镀过程中阴极附近电解液中的Cu离子浓度保持正常,降低浓差极化和提高阴极电流密度,加快沉积速度。

电镀液成分为Cu2+17.5g/L,H2SO4175g/L,Cmg/L,加速剂2mL/L,抑制剂8mL/L和平整剂1.5mL/L(添加剂均来自美国Enthone公司)。C1-能提高镀层光亮度和平整性,降低镀层的内应力,增强抑制剂的吸附。加速剂通常是含S或其他官能团的有机物,包括硫脲及其衍生物,它的作用是促进Cu的成核,使各晶面生长速度趋于均匀。抑制剂包括聚乙二醇(PEG)、聚丙烯二醇和聚乙二醇的共聚物等,它的作用是和C1-一起在阴极表面上形成一层连续膜以阻止Cu的沉积。平整剂通常是杂环化合物,一般含有N原子,它的作用是降低镀层表面粗糙度。

对于脉冲电镀,考虑到镀层与电解液界面间存在电位差,会在镀层表面形成一个双电层,其作用等效于一个电容,脉冲频率如果太大,双电层电容在脉宽和脉间内来不及充放电,此时的脉冲电流将接近于直流电流。但如果脉冲频率太小,电流效率就会变得很低,因此脉宽和脉间的时间一般都选在毫秒级。根据文献[9]的研究结果,固定ton=8ms,toff=2ms,研究不同平均电流密度的影响。实验中通过设置不同的电流密度以及相对应的电镀时间,将Cu镀层厚度都较严格地控制在1 m。实验中使用方波脉冲,测量的Cu镀层薄膜参数包括电阻率、XRD、SEM和AFM。

2 结果和讨论

2.1 电阻率测量结果图1是电沉积Cu层电阻率与电流密度之间的关系。可见,脉冲电镀得到的Cu镀层电阻率小于相同电流密度下的直流镀层。在小电流密度时(<2A/dm2),直流镀层和脉冲镀层的电阻率都较大。

2.2 XRD测量结果

在XRD测量中,以晶面(hkl)的织构系数TC(texturecoefficient)来表征晶面择优程度[10]。

式中:I(hkl)、I0(hkl)分别表示沉积层试样和标准试样(hkl)晶面的衍射线强度;n为衍射峰个数。当各衍射面的TC值相同时,晶面取向是无序的,如果某个(hkl)面的TC值大于平均值,则该晶面为择优取向。晶面的TC值越大,其择优程度越高。

图2中(a)和(b)分别为直流镀层和脉冲镀层织构系数与电流密度的关系。(111)晶面抗电迁移的能力是(200)晶面的4倍,因此(111)晶面更有利于互连。两张图的变化趋势类似,主要晶面都是(111)和(200),但直流镀层中(111)的择优程度较脉冲镀层稍好。通过对Cu种籽层进行XRD后发现,籽晶Cu中(200)晶面呈现绝对择优。因此,XRD的结果表明,直流电镀的晶面抗电迁移的能力要优于脉冲电镀。由于1 m的Cu电镀层太薄,镀层受到较强基体效应的影响,电沉积条件对晶面的影响很小,因此籽晶层的晶面在很大程度上决定了镀层的晶面情况。有文献报道,当Cu镀层超过4 m后,就基本不受基体外延的影响,而主要由电沉积条件决定,形成绝对优势的择优晶面取向。

2.3 AFM测量结果

图3为脉冲电镀与直流电镀电沉积Cu镀层表面粗糙度RMS(rootmeansquare)与电流密度的关系。可见脉冲所得镀层表面粗糙度仅为几个纳米,而直流所得镀层表面粗糙度在10nm以上,最大时甚至达到了40nm,这样大的粗糙度将为后续CMP工艺造成极大的困难。而平整的表面可以为CMP工艺提供一个易于进行处理的基底表面,采用脉冲电镀Cu镀层的表面粗糙度RMS比直流电镀的低。

2.4 SEM测量结果

图4为脉冲电镀与直流电镀电沉积Cu镀层的SEM照片。由于有机添加剂将极大地影响Cu晶粒的生长过程,为了单独考察电沉将增进行业的健康发展、保证HCFCs替换工作的顺利进行及行作为1家长时间的泛欧经销商业整体技术水平的提高积条件对晶粒生长的影响,SEM测量的是在没有三种添加剂情况下得到的镀层。可见在相同的电流密度下,脉冲所得镀层的表面晶粒密度远大于直流。之所以会出现这样的差别,原因在于脉冲关断时间虽然对电镀效率没有贡献,但它并不是一个 死时间 。在关断周期内可能发生一些对电结全市化工园区(加快航空材料利用示范平台建设含监测点)外的化工生产企业总量晶过程很有影响的现象,如重结晶、吸脱附等。在关断时间内,晶粒会长大,这是由于晶粒在关断时间内发生了重结晶现象。从热力学规律可知,晶粒越大越稳定。集成电路芯片互连中通常需要较大尺寸的晶粒,因为大尺寸晶粒的晶粒边界较少,偏折电子的几率较小,相应的电阻系数也较小,抗电迁移能力也更强[11]。

3 结语

本文研究了脉冲电镀和直流电镀所得Cu镀层电阻率、织构系数、晶粒大小和表面粗糙度等特性参数。实验结果表明,在相同电流密度条件下,脉冲电镀所得Cu镀层电阻率较低、表面粗糙度较小、表面晶粒尺寸和晶粒密度较大,而直流电镀所得镀层(111)晶面的择优程度优于脉冲。脉冲电镀对电沉积过程有着更强的控制能力,能降低浓差极化,改善镀层物理性能,获得致密的低电阻率金属电沉积层,所得镀层在很多性能方面优于直流电镀。在超大规模集成电路Cu互连技术中,脉冲电镀将有良好的研究应用前景。

运维测试教程
大数据实时实战
CNN
友情链接